USN

First/Second Semester B.E. Degree Examination, July/August 2022 **Basic Electronics**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the diode characteristics under forward and reverse biased condition with neat diagram. (06 Marks)
 - b. What is a voltage regulator? Explain with a neat diagram the working of a zener voltage regulator. (06 Marks)
 - c. With a neat diagram and waveforms, explain the working of a bridge rectifier. Derive the efficiency of this rectifier. (08 Marks)

OR

- 2 a. Explain the working of a centre tap full wave rectifier, with a neat diagram and waveform.

 Derive the ripple factor for it. (08 Marks)
 - b. What is an LED? Explain the working of an LED, with a neat diagram. (06 Marks)
 - c. In the zener voltage regulator, $V_Z = 10V$, $R_S = 1$ K Ω , $R_L = 2$ K Ω . If the input voltage V_i is varied from 22 V to 40 V, find the maximum and minimum value of zener current. [Refer Fig.Q2(c)]

Fig.Q2(c) (06 Marks)

Module-2

- 3 a. With a neat graph for the drain characteristics of an N channel JFET, explain the following:
 - (i) Cut-off voltage
- (ii) ohmic region
- (iii) Pinch off voltage
- (iv) Break-down

- (08 Marks)
- b. What is commutation? Explain one method of commutation of an SCR with neat diagram. (06 Marks)
- c. For an n channel JFET, $I_{DSS} = 9$ mA and $V_{GS(off)} = -8$ V (maxm), using these values determine the drain current for VGS = 0V; -1 V, and -4 V. (06 Marks)

OR

- 4 a. With neat circuit diagrams, explain the construction and operation of an enhancement type MOSFET. (08 Marks)
 - b. How is CMOS used as an inverter? Explain with neat diagram.

(06 Marks)

c. Explain the switching action of an SCR using two transistor model.

(06 Marks)

Module-3

- 5 a. With neat diagrams and explanation analyze a differential input op-amp amplifier. (06 Marks)
 - b. With respect to an op-amp, explain the following and give their ideal values:
 - (i) CMRR
 - (ii) PSRR
 - (iii) Input offset voltage
 - (iv) Input offset current

(08 Marks)

c. With relevant diagram and derivation show how an op-amp can be used as inverting summing amplifier (Adder). (06 Marks)

OR

- 6 a. Explain how an op-amp can be used as a difference amplifier with neat diagram. (08 Marks)
 - b. For the circuit of the inverting amplifier shown in Fig.Q6(b), calculate the following:
 - (i) Closed loop gain A_f

(ii) Output voltage V₀

(iii) Input current I₁

(iv) Feedback current I_f

Fig.Q6(b)

(06 Marks)

c. For the circuit Fig.Q6(c), calculate the output voltage of V_{01} and V_{02} .

(06 Marks)

Module-4

- 7 a. How does a transistor voltage amplifier work? Explain and also derive the equation for voltage gain. (08 Marks)
 - b. With relevant diagrams and equations, explain the concept of positive and negative feedback amplifier concept. (06 Marks)
 - c. Determine the voltage gain and the ac output voltage if $r'e = 50 \Omega$ for the circuit shown in Fig.Q7(c). What value of R_C will get a voltage gain of 50?

Fig.Q7(c)

(06 Marks)

OR

- 8 a. How does a transistor function like a switch? Explain with relevant diagrams. (06 Marks)
 - b. With a neat circuit diagram, explain RC phase shift oscillator. Write the equation for the frequency of oscillation. (08 Marks)
 - c. With relevant diagram, explain the internal block diagram of IC 555 Timer. (06 Marks)

Module-5

9 a. Realize a full adder using two half adders. Derive the expression for sum and carry.

(08 Marks)

(04 Marks)

- b. Convert the following as indicated:
 - (i) $(F A C E)_{16} = ($ $)_2$
 - (ii) $(1001101)_2 = ()_8$
 - (iii) $(126)_8 = ()_{10}$
 - (iv) $(1689)_{10} = ()_{16}$ (08 Marks)
- c. Subtract 11010 from 10111 using 2's complement method.

OR

- 10 a. With a neat circuit diagram, explain the block diagram of a GSM system. (08 Marks)
 - b. Explain the working of a RS latch with neat diagram and function table. (06 Marks)
 - c. Prove the following identities using truth table:
 - (i) $\overline{A \cdot B} = \overline{A} + \overline{B}$
 - (ii) $A \cdot (A + B) = A$ (06 Marks)

* * * * *